3.353 \(\int \cos ^{\frac{3}{2}}(c+d x) (a+a \sec (c+d x)) \, dx\)

Optimal. Leaf size=61 \[ \frac{2 a \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{3 d}+\frac{2 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d} \]

[Out]

(2*a*EllipticE[(c + d*x)/2, 2])/d + (2*a*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a*Sqrt[Cos[c + d*x]]*Sin[c + d*
x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0693064, antiderivative size = 61, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {4225, 2748, 2639, 2635, 2641} \[ \frac{2 a F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a \sin (c+d x) \sqrt{\cos (c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x]),x]

[Out]

(2*a*EllipticE[(c + d*x)/2, 2])/d + (2*a*EllipticF[(c + d*x)/2, 2])/(3*d) + (2*a*Sqrt[Cos[c + d*x]]*Sin[c + d*
x])/(3*d)

Rule 4225

Int[(csc[(a_.) + (b_.)*(x_)]*(B_.) + (A_))*(u_), x_Symbol] :> Int[(ActivateTrig[u]*(B + A*Sin[a + b*x]))/Sin[a
 + b*x], x] /; FreeQ[{a, b, A, B}, x] && KnownSineIntegrandQ[u, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \cos ^{\frac{3}{2}}(c+d x) (a+a \sec (c+d x)) \, dx &=\int \sqrt{\cos (c+d x)} (a+a \cos (c+d x)) \, dx\\ &=a \int \sqrt{\cos (c+d x)} \, dx+a \int \cos ^{\frac{3}{2}}(c+d x) \, dx\\ &=\frac{2 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}+\frac{1}{3} a \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d}+\frac{2 a \sqrt{\cos (c+d x)} \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [C]  time = 4.97961, size = 222, normalized size = 3.64 \[ \frac{a (\cos (c+d x)+1) \sec ^2\left (\frac{1}{2} (c+d x)\right ) \left (-6 \cos (c) \sqrt{\sec ^2(c)} \sqrt{\sin ^2\left (\tan ^{-1}(\tan (c))+d x\right )} \csc \left (\tan ^{-1}(\tan (c))+d x\right ) \text{HypergeometricPFQ}\left (\left \{-\frac{1}{2},-\frac{1}{4}\right \},\left \{\frac{3}{4}\right \},\cos ^2\left (\tan ^{-1}(\tan (c))+d x\right )\right )-4 \sin (c) \sqrt{\csc ^2(c)} \cos (c+d x) \sqrt{\cos ^2\left (d x-\tan ^{-1}(\cot (c))\right )} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \text{HypergeometricPFQ}\left (\left \{\frac{1}{4},\frac{1}{2}\right \},\left \{\frac{5}{4}\right \},\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )-4 \cos (c+d x) (3 \cot (c)-\sin (c+d x))+\frac{3 \csc (c) \sec (c) \left (3 \cos \left (c-\tan ^{-1}(\tan (c))-d x\right )+\cos \left (c+\tan ^{-1}(\tan (c))+d x\right )\right )}{\sqrt{\sec ^2(c)}}\right )}{12 d \sqrt{\cos (c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x]),x]

[Out]

(a*(1 + Cos[c + d*x])*Sec[(c + d*x)/2]^2*((3*(3*Cos[c - d*x - ArcTan[Tan[c]]] + Cos[c + d*x + ArcTan[Tan[c]]])
*Csc[c]*Sec[c])/Sqrt[Sec[c]^2] - 4*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^2]*Hypergeometri
cPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] - 4*Cos[c + d*x]*(3*Cot[
c] - Sin[c + d*x]) - 6*Cos[c]*Csc[d*x + ArcTan[Tan[c]]]*HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTa
n[Tan[c]]]^2]*Sqrt[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2]))/(12*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 1.333, size = 225, normalized size = 3.7 \begin{align*} -{\frac{2\,a}{3\,d}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( 4\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}\cos \left ( 1/2\,dx+c/2 \right ) +{\it EllipticF} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}-3\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ){\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c)),x)

[Out]

-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a*(4*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+Elli
pticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)-3*EllipticE(co
s(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)-2*sin(1/2*d*x+1/2*c)^2
*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/
2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)*cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a \cos \left (d x + c\right ) \sec \left (d x + c\right ) + a \cos \left (d x + c\right )\right )} \sqrt{\cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((a*cos(d*x + c)*sec(d*x + c) + a*cos(d*x + c))*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(a+a*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(a+a*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)*cos(d*x + c)^(3/2), x)